Count Data Models for Financial Data
نویسندگان
چکیده
To appear in G.S. Maddala and C.R. Rao ed., Handbook of Statistics: Statistical Methods in Finance, NorthHolland. In some financial studies the dependent variable is a count, taking nonnegative integer values. Examples include the number of takeover bids received by a target firm, the number of unpaid credit installments (useful in credit scoring), the number of accidents or accident claims (useful in determining insurance premia) and the number of mortgage loans prepaid (useful in pricing mortgage-backed securities). Models for count data, such as Poisson and negative binomial are presented, with emphasis placed on the underlying count process and links to dual data on durations. A self-contained discussion of regression techniques for the standard models is given, in the context of financial applications.
منابع مشابه
Fitting of Count Time Series Models on the Number of Patients Referred to Addiction Treatment Centers in Semnan County
Abstract. Count data over time are observed in many application areas. Many researchers use time series patterns to analyze this data. In this paper, the poisson count time series linear models and negative binomials on this type of data with the explanatory variables are studied. The Likelihood analysis and the evaluation of count time series model based on generalized linear models are pres...
متن کاملHurdle, Inflated Poisson and Inflated Negative Binomial Regression Models for Analysis of Count Data with Extra Zeros
In this paper, we propose Hurdle regression models for analysing count responses with extra zeros. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset. In this example, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...
متن کاملEstimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کاملSpatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کاملA Study on the Financial Performance of Companies Using Data Envelopment Analysis Model and Zemijsky's Model and a Comparison of their Results
Recent bankruptcy of big companies all over the world and fluctuations in Iran's stock market require that some methods be developed for the evaluation of companies' financial potential. Different models are used for the prediction of bankruptcy and the evaluation of organizational financial situation. Environmental changes and increasing competition among agencies led to companies' and organiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996